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Abstract
The melting behaviour, structure, and density of molten indium at high pressures
have been studied in an externally heated diamond anvil cell (DAC) using x-ray
diffraction/scattering measurements. Melting at high pressure was identified
by the appearance of diffuse scattering from the melt. Analysis of the diffuse
scattering shows that at 710(3) K the coordination number at the nearest
neighbour increases from 10.1(4) at 1.0 GPa to 12.1(5) at 6.3 GPa. A method
for measuring the density of amorphous materials is introduced for DAC studies
and the first result on molten indium is presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As a first-order phase transition, melting exhibits discontinuities in the first derivatives of
the free energy: volume and entropy. It also involves abrupt changes in electrical and
thermal conductivities, magnetic susceptibility, refractive index, and other physical properties.
The changes of these physical properties are often used for identification of melting at high
pressures [1, 2]. Specifically, the characteristics of melting are the loss of crystalline long-
range order and resistance to shear. To conclusively identify melting as distinct from other
first-order phase transitions, we need knowledge of the structures or shear strength of the
phases involved. Recently, with synchrotron radiation, the onset of melting of indium at high
pressure was identified by the appearance of diffuse scattering with the simultaneous loss of
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crystalline diffraction signals [3]. These results demonstrate the successful use of x-ray diffuse
scattering as a melting criterion in the diamond anvil cell (DAC).

The observation of the diffuse scattering in a DAC offers possibilities of structure studies of
melts at high pressures and high temperatures. Since the first study on liquid at high pressure
more than a decade ago [4], there have been a growing number of studies on the structure
of melts under high pressure, particularly with the use of synchrotron radiation [5–8]. These
studies are limited to applications of large-volume presses and therefore cover limited pressure
ranges. In this study, we demonstrate the feasibility of determining the structures of melts in
a DAC.

The liquid–liquid (LL) phase transition for a pure substance is a subject of many studies [9–
11]. Density is generally believed to be an appropriate order parameter for describing LL
phase transitions [9]. Knowledge of densities of melts, fluids, and glasses (amorphous solids)
is important in condensed matter physics and is a key to understanding geochemical evolution
of planetary interiors. While the density of crystalline phases can be determined by x-ray
diffraction to ultrahigh pressures, density measurements on melts and amorphous materials
at high pressures are limited to a few systems [12, 13] using large-volume presses. Here we
introduce a method for measuring the density of amorphous materials in a DAC and report
the first results on molten indium. Indium was chosen for the first experiment because of its
relatively low melting temperature and low reactivity.

2. Experiment

An externally heated DAC (DXR-7, Diacell) was used in this study. The main feature of the
DAC design is the use of four cartridge heaters inserted in the cell body, providing heat to the
entire cell and resulting in a uniform temperature distribution inside the cell. Temperatures
were measured by a type-K thermocouple at the gap position between the gasket and the
diamond anvil. Prior to the experiment, a second thermocouple was placed at the sample
position. The cell was heated to 700 K and temperatures were measured at various power
levels. The temperature at the sample position was found to be 4.5 K less than that at the gap
position with a standard deviation of 1.9 K. A rhenium gasket was pre-indented to about 50 µm
in thickness with diamond anvils 500 µm in culet diameter. Two holes 100 µm in diameter
were drilled at the positions equidistant from the centre. Indium powder (99.999%, Alfa Aesar)
was loaded into one of the holes; the other hole was loaded with NaCl. A NaCl chip (∼5 µm in
dimensions) was put at the corner of the chamber with indium for the pressure measurement.

The x-ray diffraction experiment was performed at GeoSoilEnviroCARS, beamline 13-
ID-D, at the Advanced Photon Source (APS). A CCD detector (MAR-CCD) was used to
collect diffraction patterns. The monochromatic x-ray beam was produced using a channel-
cut crystal (silicon 220) and was fixed at an energy of 29.200 keV, calibrated by scanning
through the tin metal K-absorption edge. The x-ray beam size was controlled by a slit system
to 150 × 150 µm and then focused to a beam size of 5 (vertical) × 5 (horizontal) µm at the
FWHM by Kirkpatrick–Baez mirrors [14]. Typical CCD exposure times were 60 s.

The x-ray intensity before and after the DAC was monitored by an ion chamber and a
photodiode, respectively. The photodiode reading reflects the x-ray absorption of the sample
and the DAC, while the reading from the ion chamber is used for normalization.

3. High-pressure melting

Diffuse scattering from indium melt is clearly observed in the CCD image (figure 1). Our
results on high-pressure melting are summarized in figure 2 and compared to the piston–
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Figure 1. A typical diffuse scattering pattern of
molten indium integrated from an x-ray scattering image
recorded in a CCD detector (inset). A broad diffuse
ring is clearly visible at around 9.5◦ 2θ . Two crystalline
diffraction lines are from the rhenium gasket.

Figure 2. High-pressure melting curves for indium.
The symbols show the results of this study with errors
bars comparable to or less than the symbol size. An
experimental path of isothermal compression at 710(3) K
is also shown.

cylinder results of Dudley and Hall [15] and McDaniel et al [16]. Our data show slightly higher
melting temperatures than those of Dudley and Hall [15]. As pointed out in a later work [17],
the pressure scale in Dudley and Hall’s work needs to be revised downward in accordance
with the fixed points of solid–solid transitions obtained by Kennedy and La Mori [18]. After
pressure correction, the melting curve of Dudley and Hall [15] is almost identical to that of
McDaniel et al [16]. Clearly, our data support the correction [17].

4. Density of melts

A standard was introduced in the sample preparation for measuring the density of molten
indium. From the known density of the standard material determined by x-ray diffraction, the
thickness of the sample chamber can be obtained. One typical x-ray transmission scan is given
in figure 3 with the monochromatic beam of 29.200 keV. According to the absorption law:
I = I0 exp(−µρl), where I is the transmission intensity, I0 the normalized incident intensity,
µ the mass absorption coefficient, ρ the density, and l the thickness of the sample, the thickness
(l) can be obtained from

thickness (l) = ln(INaCl/IRe)/(µReρRe − µNaClρNaCl). (1)

The quantities in the right-hand side of equation (1) are either known values (µ) or measurable
(ρ and I ). The x-ray transmission can be directly measured as shown in figure 3; the mass
absorption coefficients at 29.200 keV is obtained from a report [19] by the National Bureau
of Standards; the densities of NaCl and rhenium are obtained by x-ray diffraction since these
two materials were in crystalline states in the pressure–temperature range of this study. By
assuming the same thickness across the sample and the standard, we obtain the density of the
molten state:

ρIn = [ln(INaCl/IIn) + µNaClρNaCll]/µInl. (2)

It should be noted that the distance between two diamond anvils is not always the same
across the culet area. Especially at pressures over 30 GPa, deformation occurs with diamond
anvils [20], resulting in a variable thickness profile. In this case, a two-dimensional scan is
required for obtaining a thickness profile across the whole culet area [21].
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Figure 3. X-ray transmission intensities measured by a
photodiode across the sample and the standard (NaCl).
The monochromatic x-ray beam was at 29.200 keV. The
step size for the scan was 5 µm. Small x-ray beam size
is critical for a reliable measurement.

Figure 4. Densities of molten indium at 710(3) K at high
pressures. The value at ambient pressure (open square)
is from [22]. The curve is the fit with the second-order
Birch–Murnaghan equation of state with the parameters
shown in the figure.

The transmission data shown in figure 3 were measured at the condition (3.4 GPa and
448 K) where the indium was in the crystalline state. By measuring its x-ray diffraction, we
obtained a density of 7.667(16) g cm−3 for the crystalline indium. By absorption measurement
and employing equations (1) and (2), we obtained a thickness of 51.39(22) µm and a density
of 7.72(11) g cm−3, where the standard errors were estimated by the errors in the x-ray
transmission intensities and in the molar volumes obtained by diffraction. The relative error
(�ρ/ρ) obtained by the absorption method is 1.4% compared to that (0.2%) obtained by
diffraction. The density difference between the two methods is 0.053 g cm−3, which is within
the standard error of 0.11 g cm−3 given by the absorption method. We found that the main
error source in the absorption method is the transmission intensities. Some irregularities can
be seen from the transmission profile (figure 3). More improvement can be achieved by using
a cleaner x-ray beam less than 5 µm in size and a longer collecting time to achieve better
statistics. A proper choice of energy and the standard material will also help to produce an
optimal intensity contrast between the material under study and the standard.

As can be seen in figure 2, we performed an isothermal compression at 710(3) K. The
compression behaviour of molten indium is given in figure 4. The temperature dependence of
the densities of molten indium at room pressure was measured by the sessile-drop method [22],
which gives the density of indium at 710 K as 6.834 g cm−3. The ambient pressure data are
consistent with the extrapolation of our high-pressure results. The line in figure 4 is the
fit with the Birch–Murnaghan equation of state with parameters of K0 = 23.9(6) GPa and
K ′ = 4 obtained by fixing ρ0 = 6.834 g cm−3. From the compression data [23–25] at 300 K for
crystalline indium, the Birch–Murnaghanequation-of-state parameters are ρ0 = 7.310 g cm−3,
K0 = 45.7(6) GPa, K ′ = 5.2(2) GPa. Clearly, the melt is more compressible than the
corresponding solid.

5. Structure of melts

The observed x-ray scattering intensity I obs(Q) may be expressed by [26]

I obs(Q) = P A[I coh(Q) + I inc(Q) + I mul (Q) + I back(Q)], (3)
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Figure 5. An illustration of obtaining the coherent scattering of molten indium. By subtracting
the x-ray scattering (b) of the corresponding crystalline phase at P–T conditions close to melting,
the coherent scattering from the melt can be obtained (a − b). A few crystalline peaks from the
rhenium gasket exist in the original patterns, which can also be subtracted as shown.

where Q = 4π sin(θ)/λ, P is the polarization factor, A the absorption factor, and I coh , I inc,
and I mul are the coherent, incoherent, and multiple-scattering intensities, respectively. I back is
the background scattering intensity from surrounding materials (diamond anvils in this case).
I mul is relatively weak and is usually neglected in x-ray scattering [26, 27]. I coh can be
expressed as f 2

a S(Q), where fa is the atomic scattering factor and S(Q) the structure factor.
To obtain S(Q), the incoherent scattering (I inc) and background scattering (I back) have to be
subtracted from the observed intensity.

After a few cycles of melting and solidification, crystal growth of the indium sample
occurred, often resulting in the disappearance of the diffraction signals from the crystalline
phase. The absence of crystalline diffraction gives an ideal reference for subtracting the
incoherent and the background scattering. Figure 5 shows an example of how I coh was
obtained. The x-ray scattering patterns at conditions just above (pattern a) and below (pattern b)
melting are shown. Pattern b from the crystalline phase includes information on I inc and I back

in equation (3) (e.g., the Compton scattering of the diamond anvils and the sample). By
subtracting pattern b from that of the molten phase (pattern a), the coherent scattering I coh(Q)

can be obtained.
The diffraction intensity was then converted into the structure factor, S(Q) =

N I coh(Q)/ f 2
a (Q), where N is the normalization factor for S(Q) → 1 at Q → ∞. Figure 6

shows the structure factors measured at various pressures at a temperature of 710(3) K.
From S(Q), the pair distribution function, g(r), is given by Fourier transformation of
Qi (Q) = Q[S(Q) − 1]. The density data measured in this study were used in the calculation
of g(r) (figure 7).

The pair distribution function g(r) of molten indium shows a sharp first peak at about
3.0 Å and a broad second peak around 6.5 Å. There are some spurious ripples on both sides
of the first peak, and the first peak is broader than those reported at 1 bar [28, 29], even that at
1.0 GPa, which may result from the limited range of Q over which the S(Q) were measured
and from errors in the S(Q) themselves. Therefore, it is important to have large Q-coverage
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Figure 6. Structure factors of molten indium as a function of pressure at a temperature of 710(3) K.
It can be seen that the intensity of the first peak increases with pressure increasing. The dotted line
shows the data at 1 bar and 773 K [29] for comparison.

Figure 7. The pair distribution function g(r) of molten indium at 710(3) K.

for studying the structure of amorphous materials in a DAC. With increasing pressure, the first
peak of g(r) becomes sharper and more intense, indicating that the atoms are more localized
around the nearest neighbour. This effect is also noticeable in S(Q) (figure 6) where the
intensity of the first peak at around Q of 2.3 Å−1 increases with pressure. With the concept
of the coordination number (CN) at the nearest neighbour, this phenomenon can be described
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Figure 8. The coordination number of the nearest neighbours of molten indium as a function of
pressure at 710(3) K. The error bars are at the ±5% level, a value estimated from errors in g(r).
Uncertainties arising from the errors in density are less than 2%. Uncertainties arising from the
choice of the limits on both sides of the first peak in g(r) could be as large as 30%. Data at 1 bar
(�) are from [29].

in a quantitative way. The CN was calculated by the integration of the first peak in the radial
distribution function, RDF = 4πr2g(r), from zero to the first minimum after the first peak
(rmin of 4.0 Å). The result (figure 8) shows that the CN increases with pressure almost linearly
within experimental errors.
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